
Single-Valued DMBE Potential Energy Surface for HSO: A Distributed n-Body Polynomial
Approach
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An accurate single-valued double many-body expansion (DMBE) potential energy surface is reported for the
ground electronic state of HSO based on novel MR CISD ab initio energies suitably corrected for the complete
one-electron basis set/complete CI limit. To improve the accuracy of the fit, we have suggested an-body
distributed polynomial approach which implies using individual multinomial developments at the various
stationary points. For simplicity, only the three most relevant such points have been considered: two minima
(HSO, HOS) and the saddle point connecting them.

1. Introduction

The chemistry of atmospheric sulfur is of great interest due
to its importance in environmental issues. In particular, a
considerable number of experimental studies have been reported
for the O(3P) + H2S system.1-6 Goumri et al.7 studied the
geometrical features and energetics for the minima and 11
transition states of this system at the MP2)FULL/6-31G(d) and
Gaussian-2 (G-2) levels of theory. They have also calculated
canonical transition state theory rate coefficients for the various
channels arising from the O(3P) + H2S reaction and compared
with experiment. For a complete analysis of the experimental
results, a classical and/or quantum dynamics study would
therefore be desirable. For this purpose, one requires to construct
a global potential energy surface for the H2OS system. As a
first step in this construction, potential energy surfaces surfaces
must be provided for the various fragments. Among them is
HSO, which is an important molecule per se in atmospheric
chemistry. In particular, it may be involved in a so-called
catalytic cycle8-10 for destruction of ozone in the troposphere,
namely

There have been numerous experimental and theoretical
studies of the HSO and HOS isomers.11-28 Ab initio calcula-
tions for the HSO and HOS radicals were first reported by
Sannigrahi et al.,26 who predicted HOS to be more stable than
HSO. Several ab initio calculations7 have been reported
afterward which corroborated such a prediction, although the
magnitude of the energy difference between the minima
associated with these species was found to decrease with
improvement in the quality of the calculations. In fact, it was
pointed out by Xantheas and Dunning27 that failure to account
for dynamical correlation and the inadequacy of the basis sets
were the main reasons why earlier calculations led to poor
geometries and failed to correctly predict the relative stability
of HSO and HOS. It seems well-established7 now that HSO is
more stable than HOS. However, most ab initio calculations so
far reported have been devoted to studying the minima and the
transition state for the isomerization process. An exception is
the work by Xantheas and Dunning,27 who have computed the

minimum energy paths for the addition of H to SO to form
HSO and HOS. In the present work, we report novel full val-
ence complete active space (FVCAS) and multireference con-
figuration interaction (MRCI) calculations covering over 500
geometries, including the minima, transition states, and S-H-O
geometries. Moreover, we have subsequently corrected the
calculated ab initio energies by means of the double many-
body expansion-scaled external correlation (DMBE-SEC)
method29 to account for the complete basis set/complete CI
limits. The resulting DMBE-SEC energies have then been
used to calibrate a potential energy surface based on the
DMBE30-33 formalism (see also ref 34). This potential energy
surface shows the correct long-range behavior at all dissociation
channels and provides a realistic representation at all interatomic
separations, especially those covered by the calculated ab initio
energies.

The paper is organized as follows. Section 2 describes the
ab initio calculations carried out in the present work. In section
3, we deal with the representation of the DMBE potential energy
surface. Specifically, section 3.1 focuses on the two-body energy
terms, while section 3.2 concentrates on the three-body energy
terms. The main topographical features of the DMBE potential
energy surface are discussed in section 4. Some concluding
remarks are in section 5.

2. Ab Initio Calculations

The ab initio calculations have been carried out at the MRCI35

level with a FVCAS36,37 as the reference wave function. For
the basis set, we have selected the aug-cc-pvtz (AVTZ) of
Dunning,38-40 with the calculations being carried out using the
MOLPRO41 package. A total of 500 grid points have been
chosen to map the potential energy surface over the region
defined by 2.61e r/a0 e 8.76, 1.91e R/a0 e 6.73, and 0e
γ/dege 180. The Jacobi coordinatesr, R, andγ are defined in
Figure 1: r is the SO distance,R is the vector associated with
the atom-diatom separation connecting the H atom to the
geometrical center of SO, andγ is defined by cosγ ) rR/|rR|.
We have also studied at the same level of theory the complicated
potential energy curves for SO, SH, and OH (78 points in all).
The ab initio energies determined in this way were subsequently
corrected by using the DMBE-SEC method32 to account for the
excitations beyond singles and doubles and, more importantly,
for the incompleteness of the one-electron basis set.

HS + O3 f HSO+ O2 (1)

HSO+ O3 f HS + 2O2 (2)
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In the DMBE-SEC method, the total interaction energy of
the triatomic is written as29

where

and the summations extend to all diatomic fragments. In turn,
the three-body energy term of the SEC series expansion assumes
the form

whereFAB
(2) is a parameter being chosen to reproduce the bond

dissociation energy of the corresponding AB diatomic. Because
of the lack of similar spectroscopic information on the well-
depth of the triatomic, the corresponding three-body factor
FABC

(3) has been taken as the average of the two-bodyF-factors.
Such a procedure, originally tested29 on ground-state HO2, led
in the present case to the valuesFSO

(2) ) 0.6850,FSH
(2) ) 0.7713,

FOH
(2) ) 0.7826, andFHSO

(3) ) 0.7463.

3. DMBE Potential Energy Surface for HSO

3.1. Two-Body Energy Terms. The diatomic potential
energy curves have been modeled using the extended Hartree-
Fock approximation correlation energy method for diatomics,
including the united atom limit (EHFACE2U),42 with the
available parameters being determined by fitting experimental
and ab initio data. They assume the general form31,42

where EHF refers to the extended Hartree-Fock type energy
and dc is the dynamical correlation energy. As usual, the latter
is modeled semiempirically by43

with the damping functions for the dispersion coefficients

assuming the form

In eq 10,An andBn are auxiliary functions defined by

whereR0, b0, R1, andâ1 are universal dimensionless parameters
for all isotropic interactions30,31R0 ) 16.36606,R1 ) 0.70172,
b0 ) 17.19338, andâ1 ) 0.09574. Moreover, the scaling
parameterF is defined as

where R0 ) 2(〈rX
2 〉1/2 + 〈rY

2〉1/2) is the LeRoy44 distance for
onset of the undampedR-n series expansion and〈rX

2 〉 is the
expectation value of the squared radius for the outermost
electrons of atom X (similarly for atom Y). Finally, the
exponentially decaying part of the EHF-type energy term is
represented by the general form

where

where r ) R - Re is the displacement coordinate from the
equilibrium diatomic geometry;D, ai (i ) 1 f 3), andγi (i )
0 f 2) are adjustable parameters to be obtained as described
elsewhere.31,42

For the ground-state hydroxyl radical OH(X2Π), we have used
a potential energy curve previously reported by one of us and
Voronin45 which has been calibrated using Rydberg-Klein-
Rees (RKR)-type data. Figure 2a shows that the potential energy
function so obtained also reproduces our calculated ab initio
energies.

For the sulfur hydride ground state, SH(X2Π), there is no
RKR experimental data, and hence, we have used our own ab
initio points and the experimental dissociation energy46 in the

Figure 1. Coordinate system used in the present work.

V(R) ) VFVCAS(R) + VDMBE-SEC(R) (3)

VFVCAS(R) ) ∑
AB

VAB,FVCAS
(2) (RAB) + VABC,FVCAS

(3) (RAB,RBC,RAC)

(4)

VDMBE-SEC(R) ) ∑
AB

VAB,DMBE-SEC
(2) (RAB) +

VABC,DMBE-SEC
(3) (RAB,RBCRAC) (5)

VAB,DMBE-SEC
(2) (RAB) ) [VAB,FVCAS-CISD

(2) (RAB)

-VAB,FVCAS
(2) (RAB)]/FAB

(2) (6)

VABC,DMBE-SEC
(3) (RAB,RBC,RAC) )

[VABC,FVCAS-CISD
(3) (RAB,RBC,RAC) -

VABC,FVCAS
(3) (RAB,RBC,RAC)]/FABC

(3) (7)

V(R) ) VEHF + Vdc (8)

Vdc(R) ) - ∑
n)6,8,10

øn(R)
Cn

Rn
(9)

Figure 2. EHFACE2U potential energy curves: (a) OH(X2Π), (b)
SH(X2Π), and (c) SO(X3Σ-). The circles indicate the ab initio points
and the lines the EHFACE2U values.

øn(R) ) [1 - exp(- An
R
F

- Bn
R2

F2)]n

(10)

An ) R0n
-R1 (11)

Bn ) â0 exp(-â1n) (12)

F ) 5.5+ 1.25R0 (13)

VEHF(R) ) -
D

R
(1 + ∑

i)1

3

air
i) exp(-γr) (14)

γ ) γ0[1 + γ1 tanh(γ2r)] (15)
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fitting procedure. Figure 2b shows that the model potential
accurately reproduces the ab initio energies while showing good
ability for extrapolation to the regions not covered by the fitted
data. The sulfur oxide ground-state SO(X3Σ-) potential energy
curve has been calibrated by fitting our FVCAS-SEC energies
and the experimental RKR points of Singh et al.47 in conjunction
with the recent heat of formation determined by Clerbaux et
al.48 Except for the last inner ab initio points, Figure 2c shows
that the data is represented quite reliably. However, at very short
distances, the ab initio points may not be as accurate, while the
EHFACE2U model leads by construction to the proper united-
atom limit of the collapsed diatomic (R f 0). The numerical
values of all diatomic parameters are gathered in Table 1 and
Table 2.

3.2. Three-Body Energy Terms. Following the usual
procedure30-33 (see also ref 34), we split the three-body energy
into several contributions. Specifically, one has the extended
Hartree-Fock and dynamical correlation parts, with the elec-
trostatic component of the EHF part also considered indepen-
dently. In the following subsections, we provide a description
of each component. To represent the three-body dynamical

correlation and the electrostatic energies, we have chosen the
general form proposed by one of authors,49 namely

wherei labels the I-JK channel associated with the center of
mass separationri, Ri is the J-K bond distance, and cosθi )
rbiRBi/|rbiRBi|; for the notation, see Figure 1 of ref 32. In turn,
Cn

(i)(Ri,θi) are electrostatic coefficients whenn ) 4 or 5,
representing the dipole-quadrupole and quadrupole-quadrupole
interactions. Forn ) 6, 8, and 10,Cn

(i)(Ri,θi)’s represent atom-
diatom dispersion coefficients given by

wherePL(cosθi) denotes the L-th term of the Legendre poly-
nomial expansion andCn

L is the associated expansion coeffi-
cient. Additionally, the functionøn(ri) in eq 16 is the corre-
sponding diatomic damping function given by eq 10. More-
over, fi(R) is a switching function chosen from the require-
ment that it must be+1 for Ri ) Ri

e and ri f ∞ and 0 for
Ri f ∞. Following previous work,49 we have employed the
form

wheresi ) Ri - Ri
e (corresponding expressions apply forsj, sk,

fk, and fk), and η is a constant chosen to ensure the proper
asymptotic behavior; as before,49 we have chosen the valueη
) 3 such as to satisfy the proper asymptotic limits. Furthermore,
the parameterê has been taken as the average of the exponents
of the OH and SH range decaying factors in the three-body
term: ê ) 0.58a0

-1. Regarding the damping functionsøn(ri),
we still adopt eq 10 but replaceR by the center-of-mass
separation for the relevant atom-diatom channel. Additionally,
the value ofF has been assumed as the average value of the
corresponding OH and SH diatomic scaling parameters. Finally,
ri has been approximated31 by ri ) (Rj + Rk)/2.

3.2.1. Three-Body Dynamical Correlation Energy.Following
previous work,49 only the spherically averaged components (L
) 0) of the atom-diatom dispersion coefficients have been
considered, with the involved internuclear dependences being

TABLE 1: Long-Range Coefficients for the Diatomic
Fragments in au

R0 C6 C8 C10

SO(X3Σ-) 7.3119 53.09 1206.5 30982.5
SH(X2Π) 7.9652 34.49 896.5 26332.1
OH(X2Π) 6.2949 11.47 195.0 4342.3

TABLE 2: Parameters of the Two-Body Hartree-Fock
Energy in au

SO(X3Σ-) SH(X2Π) OH(X2Π)

Re 2.7988 2.5334 1.8344
D 0.479589 0.308372 0.275865
a1 2.2594 1.8997 2.2904
a2 1.2128 0.7234 1.0466
a3 1.0265 0.2562 0.5147
γ0 1.7823 1.4139 1.7110
γ1 3.6305 6.3459 1.9222
γ2 0.0458 0.0146 0.0747

TABLE 3: Numerical Values, in au, of the Parameters in
Eq 19

S-OH C6(R) C8(R) C10(R)

RM 4.0 4.0 4.0
DM 34.28 1044.0 34824.0
a1 -0.0150 -0.0751 -0.0987
a2 -0.2371 -0.2452 -0.2481
a3 0.0860 0.1014 0.1073
b2 0.1532 0.1696 0.1799
b3 0.0068 0.0122 0.0137

O-SH C6(R) C8(R) C10(R)

RM 4.94 4.93 4.92
DM 17.13 537.2 17643.0
a1 -0.1269 -0.1603 -0.1842
a2 -0.1776 -0.1712 -0.1677
a3 0.0863 0.0879 0.0903
b2 0.1741 0.1830 0.1919
b3 0.0188 0.0203 0.0216

H-SO C6(R) C8(R) C10(R)

RM 5.29 5.41 5.49
DM 16.20 457.7 14495.0
a1 0.7627 0.7699 0.7739
a2 0.1331 0.1238 0.1177
a3 0.0009 0.0006 0.0012
b2 0.0784 0.1018 0.1219
b3 1.0× 10-6 0.0009 0.0006

Figure 3. Dispersion coefficients for the atom-diatom asymptotic
channels of HSO as a function of the corresponding intramolecular
distance. TheC6 coefficients are displayed in panels a for S-OH, b
for O-SH and c for H-SO. Panels d-f show the correspondingC8

coefficients and g-i those ofC10.

Vdc,ele
(3) ) ∑

i
∑

n

fi(R)Cn
(i)(Ri,θi)øn(ri)ri

-n (16)

Cn
(i) ) ∑

L

Cn
LPL(cosθi) (17)

fi ) 1
2

{1 - tanh[ê(ηsi - sj - sk)]} (18)
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estimated as reported elsewhere,50 i.e., by using the dipolar
isotropic polarizabilities (calculated in this work at the MRCI
level of theory), combined with a generalized Slater-Kirkwood
approximation.51 The atom-diatom dispersion coefficients were
then fitted to the form

wherer ) R - RM is the displacement relative to the position
of the maximum andb1 ≡ a1. The parameters that resulted from
the fits are reported in Table 3, and the internuclear dependences
of the dispersion coefficients are shown in Figure 3.

As pointed out elsewhere,49 eq 16 causes an overestimation
of the dynamical correlation energy at the atom-diatom
dissociation channel. To correct such a behavior, we have
multiplied the two-body dynamical correlation energy for the
i-th pair by fi(R) and, correspondingly, for the channelsj and
k. This ensures49 that the only two-body contribution at thei-th
channel is that of JK.

3.2.2. Three-Body Electrostatic Energy.Since the H atom
has spherical symmetry, we have to consider only the interac-
tions of the oxygen and sulfur quadrupoles with the SH and
OH dipole and quadrupolar moments. Thus, a total of four
electrostatic interactions have been taken into account. As stated
above, eq 16 has been employed to write the electrostatic energy,
and in this case,Cn(Ri,θi)’s are electrostatic coefficients. If the
Buckingham convention is used,52 such coefficients assume the
form

where the indexes AB and C stand for OH (SH) and S (or
O), respectively. The functional forms ofADQ and AQQ were
those employed in previous work53 based on the so-called
classical optimized quadrupole54 model, according to which the

Figure 4. Variation of the OH (a) and SH (b) dipole moments with
internuclear distance. Circles indicate MR-CISD points, while the lines
indicate the results predicted from eq 22.

Figure 5. Variation of the OH (a) and SH (b) quadrupole moments
with internuclear distance. Circles indicate the MR-CISD points, while
the lines show the results predicted from eq 23.

Cn
A-BC(R) ) Cn

AB + Cn
AC + DM(1 + ∑

i)1

3

air
i) exp(-∑

i ) 1

3

bir
i)

(19)

Figure 6. Reference geometries used in the present work for the three-
body EHF part of the potential energy surface: (a) HOS, (b) HSO,
and (c) transition state for reaction HSOf HOS. The solid lines
represent the equilibrium geometries of the corresponding stationary
points, while the dotted lines show the reference geometries which have
been actually employed.

TABLE 4: Numerical Values, in au, for OH and SH Dipole
Moments in Eq 22

OH SH

RM 2.20 1.8
DM 0.658585 0.314426
a1 -0.29843 0.189345
a2 -0.174482 -0.165016
a3 0.0762564 0.0174276
b2 0.0204867 0.0134371
b3 0.1171210 0.000001

TABLE 5: Numerical Values, in au, for OH and SH
Quadrupole Moments in Eq 23

OH SH

RM 3.0 3.7
M6 5500 21 000
DM 1.127 0.65607488
a1 -0.314458 0.01782770
a2 -0.254650 -0.1186250
a3 0.2301120 0.54471800
b1 -0.373896 -0.0758723
b2 0.5226040 0.70193800
b3 0.1344000 0.14595400
Q∞ 0.49 1.05

C4,ele(RAB,θ) ) 3
2

µABQCADQ(θa,θb,φab) (20)

C5,ele(RAB,θ) ) 3
4
QABQCAQQ(θa,θb,φab) (21)
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atomic quadrupole adiabatically adjusts its angular orientation
to that of the diatomic molecule to give the lowest interaction
energy.

The analytical expression for the OH and SH dipoles have
been obtained by fitting our own ab initio results to the form55

wherer ) R - RM is the displacement relative to the maximum
in µ(R) andb1 ≡ a1. In turn, the analytical expression for the
intramolecular dependence of the quadrupoles has been chosen
to be that previously employed by one of the authors and
Rodrigues56

where r ) R - RM now in the displacement relative to the
maximum inQ(r). The input data for the permanent electric
moments has been obtained from ab initio MRCI calcula-
tions carried out in the present work. The numerical values of
the parameters for the dipole and quadrupole moments using
the above equations are given in Tables 4 and 5, while the
graphical representation of the dipole and quadrupole as a
function of the diatomic bond distance is depicted in Figures 4
and 5.

3.2.3. Three-Body Extended Hartree-Fock Energy. By
subtracting, for a given triatomic geometry, the sum of the two-
body energy terms from the corresponding DMBE-SEC interac-
tion energies (defined with respect to the infinitely separated
ground-state atoms), one obtains the total three-body energy.
Then, by subtracting the three-body electrostatic and dynamical
correlation contributions from the total three-body energy
calculated above, one gets the remaining three-body extended
Hartree-Fock energy contribution. This is represented by using
the form

TABLE 6: Numerical Values of the Coefficients of PolynomialA in the Three-Body Extended Hartree-Fock Energy in au

γ1
A ) 0.85

R1
A,ref ) 3.30

γ2
A ) 0.58

R2
A,ref ) 3.56

γ3
A ) 0.49

R3
A,ref ) 1.73

c000
A ) -0.152971042 c001

A ) -0.0106451758 c 002
A ) 0.02841603

c003
A ) 0.410335814 c004

A ) -0.0186074137 c005
A ) 0.0243697848

c010
A ) -0.0318850512 c011

A ) 0.0773253466 c012
A ) 0.352135922

c013
A ) 0.196064485 c014

A ) -0.0801457935 c020
A ) 0.328257694

c021
A ) -0.841754198 c022

A ) 0.241822527 c023
A ) 0.135119134

c030
A ) -0.23207117 c031

A ) -0.495856539 c032
A ) -0.101029651

c040
A ) 0.10834947 c041

A ) 0.0439618526 c050
A ) 0.0777769216

c100
A ) -0.160730172 c101

A ) -0.145518002 c102
A ) 0.708973954

c103
A ) 0.221896139 c104

A ) 0.0335980733 c110
A ) -0.368934267

c111
A ) -0.0399540713 c112

A ) 0.54277435 c113
A ) -0.0953548204

c120
A ) 0.250767376 c121

A ) -0.0443403774 c122
A ) 0.423678731

c130
A ) -0.200739683 c131

A ) -0.148990628 c140
A ) 0.00673609579

c200
A ) 0.231212503 c201

A ) -0.571911856 c202
A ) 0.615185605

c203
A ) -0.00488797525 c210

A ) -0.612887845 c211
A ) 0.44185333

c212
A ) -0.255883112 c220

A ) -0.0467274605 c221
A ) 0.62569975

c230
A ) 0.265091203 c300

A ) -0.947014418 c301
A ) 0.414265497

c302
A ) 0.0481590732 c310

A ) 0.441634224 c311
A ) -0.560754057

c320
A ) 0.279140359 c400

A ) 0.368292954 c401
A ) 0.0417331533

c410
A ) -0.0497157716 c500

A ) 0.0184014022

TABLE 7: Numerical Values of the Coefficients of PolynomialB in the Three-Body Extended Hartree-Fock Energy in au

γ1
B ) 0.92

R1
B,ref ) 2.80

γ2
B ) 0.58

R2
B,ref ) 2.68

γ3
B ) 0.53

R3
B,ref ) 4.25

c000
B ) 0.34268533 c001

B ) -0.156266035 c002
B ) -0.294456751

c003
B ) -0.104628235 c004

B ) -0.0395350302 c005
B ) -0.0258194682

c010
B ) -0.283879354 c011

B ) 0.0249695419 c012
B ) -0.399127497

c013
B ) 0.160709558 c014

B ) -0.0491731653 c020
B ) -0.873890432

c021
B ) 0.00383147459 c022

B ) -0.152090755 c023
B ) -0.0320679312

c030
B ) 0.755325919 c031

B ) 0.408332247 c032
B ) 0.0708306864

c040
B ) 0.127078787 c041

B ) -0.0975231701 c050
B ) -0.114607354

c100
B ) -0.289964039 c101

B ) -0.230472236 c102
B ) 0.0972749497

c103
B ) -0.110590724 c104

B ) -0.0994307523 c110
B ) -0.550630406

c111
B ) -0.243992429 c112

B ) 0.0311063194 c113
B ) -0.198198673

c120
B ) 0.555584386 c121

B ) -0.370295745 c122
B ) 0.0569126419

c130
B ) 0.360760901 c131

B ) 0.170133025 c140
B ) -0.157920036

c200
B ) -0.756021158 c201

B ) -0.0522933035 c202
B ) -0.0476056622

c203
B ) -0.097395365 c210

B ) 0.645931587 c211
B ) 0.280831417

c212
B ) -0.20040811 c220

B ) 0.353531971 c221
B ) 0.0319832695

c230
B ) -0.0734865405 c300

B ) -0.60602039 c301
B ) 0.020614987

c302
B ) 0.0251193461 c310

B ) -0.051336385 c311
B ) 0.119990554

c320
B ) 0.0147474065 c400

B ) -0.0116238618 c401
B ) 0.205238381

c410
B ) 0.0734593641 c500

B ) 0.0775702596

µ(R) ) DM(1 + ∑
i)1

3

air
i) exp(-∑

i)1

3

bir
i) (22)

Q(R) ) DM(1 + ∑
i)1

3

air
i) exp(-∑

i)1

3

bir
i) + Q∞ + ø8(R)

M6

R6

(23)
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whereNA ) NB ) NC ) 5, the prime means that the sum is
restricted toi + j + k e 5, and the symmetry coordinates are
defined as

The complete set of parameters (186 in all) is 56cijk, 3 γi, and
3 Ri

ref, for each polynomial (A, B, or C) in eq 24, having been
obtained from a fit of the complete potential energy surface to
our DMBE-SEC energies. Three polynomials of the same type
and size (A, B, or C in eq 24) have been employed, one at
each of the following stationary points: HSO, HOS, and HSO
f HOS isomerization transition state (in that order). Thus, the
origin of the displacement coordinates is for each polynomial
taken to be close to the geometry of the corresponding sta-
tionary point. Figure 6 shows the reference geometries (broken
lines) employed for the three polynomials in comparison with
the geometries of HSO, HOS, and isomerization saddle point
predicted by the DMBE potential energy surface (solid line).
To obtainRi

K,ref, we have first assumed their values to be the
equilibrium geometries and, subsequently, optimized them
through a trial-and-error procedure by carrying out linear least-
squares fits. Theγi values have also been optimized in a similar
way. The points included in the fits have been chosen with the
condition that the total energy does not exceed 300 kcal mol-1

with respect to the HSO minimum. This procedure reduced the
number of fitted points to 461. The numerical values of the
parameters obtained from such a procedure are listed in Tables
6-8.

Table 9 shows the stratified root-mean-squared deviations
(rmsd) of the final fit with respect to the fitted and nonfitted

ab initio energies. As seen from Table 9, the final potential
energy surface is able to fit 461 points (with energies up to
300 kcal mol-1) with an accuracy of ca. 1 kcal mol-1. Also
seen from Table 9 is the fact that the nonfitted points are well
reproduced by the DMBE potential energy surface of the present
work; the rmsd is 2.8 kcal mol-1 for all points below 500 kcal
mol-1.

4. Features of the Potential Energy Surface

The DMBE potential energy surface predicts the most stable
minimum to be that associated with the HSO conformer. In fact,
as seen from Table 10, HSO is 0.9 kcal mol-1 lower in energy
than HOS. This result conforms with the most accurate
theoretical predictions of Goumri et al.,7 who have predicted
from their G-2 calculations an energy difference of 2.1 kcal

TABLE 8: Numerical Values of the Coefficients of PolynomialC in the Three-Body Extended Hartree-Fock Energy in au

γ1
C ) 0.76

R1
C,ref ) 3.35

γ2
C ) 0.61

R2
C,ref ) 3.00

γ3
C ) 0.50

R3
C,ref ) 3.04

c000
C ) -0.0368229496 c001

C ) -0.129003395 c002
C ) 0.20818244

c003
C ) -0.215560967 c004

C ) 0.0327436241 c005
C ) -0.00277579984

c010
C ) -0.344210958 c011

C ) 0.31920124 c012
C ) 0.676245148

c013
C ) -0.0588732027 c014

C ) 0.0626825399 c020
C ) -1.01984483

c021
C ) -1.06002701 c022

C ) -0.285430471 c023
C ) -0.0121593163

c030
C ) 0.0989442215 c031

C ) 0.0487608753 c032
C ) -0.0346353473

c040
C ) 0.442210508 c041

C ) 0.0155389963 c050
C ) 0.0192298535

c100
C ) -0.178793571 c101

C ) -0.647450641 c 102
C ) -0.545972629

c103
C ) 0.0671127689 c104

C ) 0.0147832243 c110
C ) -0.192412049

c111
C ) 0.511735943 c112

C ) -0.0906728726 c113
C ) -0.0121194958

c120
C ) -0.283103789 c121

C ) -0.0710891685 c122
C ) -0.0971627429

c130
C ) 0.167061534 c 131

C ) -0.135636288 c140
C ) -0.150887754

c200
C ) -0.0535259653 c201

C ) -0.699043015 c202
C ) -0.0428548027

c203
C ) 0.0128170641 c210

C ) -0.680231297 c211
C ) 0.188599247

c212
C ) -0.0217923261 c220

C ) 0.507919222 c221
C ) -0.0884283396

c230
C ) -0.0990154673 c300

C ) 0.392368471 c301
C ) -0.614484326

c302
C ) 0.0507822473 c310

C ) 0.5668414 c311
C ) 0.121341497

c320
C ) -0.117210525 c400

C ) -0.445262241 c401
C ) 0.0612374732

c410
C ) -0.107519532 c500

C ) 0.0639223458

VEHF
(3) ) ∑

K)A,B,C

(∑
i)0

NK

′∑
j)0

NK

′∑
k)0

NK

′cijk
K Q1

i Q2
j Q3

k)∏
i)1

3

{1 -

tanh[γi
K(Ri - Ri

K,ref)]} (24)

(Q1

Q2

Q3
)) (x1

3 x1
3 x1

3

0 x1
2

-x1
2

x2
6

-x1
6

-x1
6

)(R1 - R1
K,ref

R2 - R2
K,ref

R3 - R3
K,ref) (25)

TABLE 9: Stratified Root-mean-square Deviations (in kcal
mol-1) of the DMBE Potential Energy Surface

E/(kcal mol-1) N rmsa

5 20 0.654
10 53 0.723
20 66 0.692
30 73 0.790
40 85 0.822
50 107 0.866
60 129 0.853
70 198 0.841
80 230 0.849
90 261 0.910

100 309 0.987
110 348 0.997
120 369 1.040
130 397 1.051
140 404 1.053
150 410 1.064
160 418 1.060
170 430 1.058
180 443 1.075
200 453 1.076
300 461 1.069
400 466 1.553
500 477 2.793

a The values in italic imply that the points above the energy quoted
in the first column have not been included in the fit.
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mol-1. We have also found two van der Waals minima, namely
S‚‚‚HO and SH‚‚‚O, which lie 3.3 and 1.4 kcal mol-1 below
the corresponding dissociation channels (S+ OH or SH+ O),
respectively.

In Table 10, we report also four saddle points of index one.
The first, labeled TS1, connects the two isomers HSO and HOS
and is located 46.7 kcal mol-1 above the global minimum. Such
an estimate agrees within 0.9 kcal mol-1 with the ab initio results

TABLE 10: Stationary Points of the DMBE Potential Energy Surfacea

ROH/a0 RSH/a0 RSO/a0 E/kcal mol-1 ω1 ω2 ω3

HSO 4.4857 2.6190 2.8569 0.0b 998 1054 2181
(4.3697)c (2.6248)c (2.8233)c (1026)c (1164)c (2271)c

(4.2502)d (2.5511)d (2.9102)d (1013)d (1063)d (2570)d

HOS 1.8233 4.0819 3.0983 0.9b 839 1080 3783
2.1e

S‚‚‚HO 1.8360 5.2513 7.0873 -3.3f 118 215 3739
SH‚‚‚O 5.4670 2.5142 7.9812 -1.4g 80 104 2802
TS1 2.5679 2.7084 3.1668 46.7b 1711i 744 2354

47.6e

TS2 4.0509 6.0086 2.8296 1.7h 392i 291 1047
1.8i

TS3 7.1363 2.5335 6.3778 1.1j 97i 151 2725
TS4 1.8379 5.4132 6.5254 3.3k 139i 231 3758

a Harmonic frequencies are in cm-1, and the experimental values are in parentheses when available.b Relative to the absolute minimum of HSO,
-0.29615726Eh. c Experimental values from ref 16.d Experimental values from ref 11.e Best theoretical estimate, ref 7.f Relative to the energy of
S + OH channel,-0.17020Eh. g Relative to the energy of O+ SH channel,-0.13921Eh. h Relative to the energy of H+ SO channel,-0.19901Eh.
i Best theoretical estimate, ref. 27.j Relative to the minimum SH‚‚‚O. k Relative to the minimum S‚‚‚HO.

Figure 7. Contour plot for a S atom moving around the equilibrium OH molecule. Contours start at-0.287Eh, with successive contours at intervals
of -0.008Eh.

Figure 8. Contour plot for a O atom moving around the equilibrium SH molecule. Contours start at-0.287Eh, with successive contours at intervals
of -0.008Eh.
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of Goumri et al.7 and 0.1 kcal mol-1 with those of Xantheas
and Dunning.27 These authors suggested that such a large barrier
might explain why only the isomer HSO is observed experi-
mentally. The experimental geometry and frequencies of HSO
are also included in Table 10 for comparison. The saddle point
TS2 corresponds to a small barrier for the dissociation process
HSOf H + SO and is located 1.5 kcal mol-1 above the disso-
ciation limit; a value very similar to this one has also been ob-
tained by Xantheas and Dunning27 in their ab initio calculations
(1.8 kcal mol-1). In addition, the saddle points TS3 and TS4
have been found to connect the HSO or HOS isomers with the
two van der Waals minima. Such stationary points lie 1.1 and
3.3 kcal mol-1 above the corresponding van der Waals minima.

Figure 7 shows a contour plot for a S atom moving around
an equilibrium OH molecule. The main feature in this Figure
is the HOS minimum. Also visible is a saddle point of index
two which occurs for linear geometries.

In Figure 8, we show a contour plot for an O atom moving
around an equilibrium SH molecule. The notable features in
this plot are the HSO minimum and a saddle point of index
two for linear geometries. In addition, there is a stationary point
at high energies which appears as a minimum in the two-
dimensional (2D) space scanned in the plot. Indeed, it corre-
sponds in 3D to the isomerization transition state for the reaction
HSO f HOS.

The plot for a H atom moving around an equilibrium SO
molecule is shown in Figure 9. In this case, the minima
associated with both isomers become clearly visible, as well as
the isomerization transition state (TS1) connecting them. Not
visible in the plot though is the transition state (TS2) for the
H-atom dissociation process HOSf H + OS. Another
important feature from this plot arises as a saddle point of index

Figure 9. Contour plot for a H atom moving around the equilibrium SO molecule. Contours start at-0.287Eh, with successive contours at intervals
of -0.009Eh.

Figure 10. Stretching contour plot for linear S-H-O. Contours start
at -0.287Eh, with successive contours at intervals of-0.008Eh. The
dashed straight lines indicate the cuts associated with the curves shown
in Figure 11.

Figure 11. Potential energy curves for S-H-O linear configurations
at fixed SO distances of (a) 5.29, (b) 5.86, and (c) 7.12a0. Also shown
for comparison are the DMBE-SEC points of the present work: (O)
points included in the fit; (4) points not included in the fit. See also
Figure 10.
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two at the center of the plot. Looking like a maximum
(apparently due to an avoided crossing), such a feature should
trully be a cusp originated from the crossing of the two lowest
electronic states.

Figure 10 shows a contour plot for linear S-H-O stretching.
The main feature from this plot is the OH‚‚‚S van der Waals
minimum and a saddle point of index two connecting this min-
imum with the SH‚‚‚O one, also visible in the figure. Also indi-
cated by the dashed lines in this contour plot are cuts cor-
responding to the curves shown in Figure 11. These are depicted
mainly to show that the agreement with the ab initio data is
good, and hence, our predicted attributes for the OH‚‚‚S
hydrogen-bonded minimum should be reliable. In fact, as a test
of our DMBE potential energy surface, and in order to verify
the reliability of the hydrogen bonded structure OH‚‚‚S, we have
calculated additional (nonfitted) ab initio points at a fixed SO
distance of 7.12a0. These points are displayed graphically in
Figure 11c as a function of the SH distance with special sym-
bols. Also shown in this Figure is the prediction of our DMBE
potential surface. Clearly, the agreement between our fitted
surface and the calculated points is quite satisfactory, suggesting
that the OH‚‚‚S hydrogen-bond structure is reliably described.

Figure 12 shows the minimum energy paths for the reactions
H + SO f HS + O and H+SO f HO + S. Specifically,
Figure 12a shows the minimum-energy path for the reaction H
+ SO f SH + O, which involves the global HSO minimum.
As seen from this figure, there is no barrier for the dissociation
process HSOf H + SO. In addition, the HSOf SH + O
channel shows no barrier to dissociation either.

The minimum energy path for the process H+ OSf OH +
S is shown in Figure 12b. Clearly, the relevant isomer is now
HOS. Note that the HOSf H + OS dissociation process has
a barrier (TS2), which is about 1.7 kcal mol-1 above the H+
OS channel. In turn, the channel leading to OH+ S has no
barrier.

We have also computed the minimum energy path for the
isomerization process HSOf HOS, which is shown in Figure

12c. Clearly, the two isomers (HSO and HOS) are connected
by a saddle point of index 1 (TS1) located 46.6 kcal mol-1 above
the HSO minimum.

Finally, we comment on the fact that our ab initio calculations
predict a2Σ-/2Π crossing along the path for H approaching
collinearly OS. Such a crossing is dictated by symmetry
arguments, and hence becomes an avoided crossing at less
symmetrical geometries (Cs). This is illustrated in Figure 13,
which shows our DMBE-SEC points for the2Σ- and2Π states
as a function of the HS bond distance. Also shown in this figure
is the prediction of our fitted DMBE single-valued potential
energy surface. We observe that the fit is good but displays by
built-in construction a smoothed maximum at regions where
the crossing should take place.

5. Conclusions

We have reported a global single-valued DMBE form for
the ground electronic state of HSO. This function has been
calibrated from novel MR CISD ab initio energies after being
corrected for the complete one-electron basis set/complete CI
limit. This has been done using the DMBE-SEC method
described elsewhere.29 To improve the accuracy of the fit, we
have introduced ann-body distributed polynomial approach,
which implies using an individual multinomial development at
the various stationary points. For simplicity, these have been
restricted to the three most relevant ones corresponding to two
minima (HSO, HOS) and the saddle point connecting them.
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